p14–MP1-MEK1 signaling regulates endosomal traffic and cellular proliferation during tissue homeostasis

نویسندگان

  • David Teis
  • Nicole Taub
  • Robert Kurzbauer
  • Diana Hilber
  • Mariana E. de Araujo
  • Miriam Erlacher
  • Martin Offterdinger
  • Andreas Villunger
  • Stephan Geley
  • Georg Bohn
  • Christoph Klein
  • Michael W. Hess
  • Lukas A. Huber
چکیده

The extracellular signal-regulated kinase (ERK) cascade regulates proliferation, differentiation, and survival in multicellular organisms. Scaffold proteins regulate intracellular signaling by providing critical spatial and temporal specificity. The scaffold protein MEK1 (mitogen-activated protein kinase and ERK kinase 1) partner (MP1) is localized to late endosomes by the adaptor protein p14. Using conditional gene disruption of p14 in mice, we now demonstrate that the p14-MP1-MEK1 signaling complex regulates late endosomal traffic and cellular proliferation. This function its essential for early embryogenesis and during tissue homeostasis, as revealed by epidermis-specific deletion of p14. These findings show that endosomal p14-MP1-MEK1 signaling has a specific and essential function in vivo and, therefore, indicate that regulation of late endosomal traffic by extracellular signals is required to maintain tissue homeostasis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Proteomic analysis of endosomes from genetically modified p14/MP1 mouse embryonic fibroblasts.

The p14/MP1 scaffold complex binds MEK1 and ERK1/2 on late endosomes, thus regulating the strength, duration and intracellular location of MAPK signaling. By organelle proteomics we have compared the protein composition of endosomes purified from genetically modified p14⁻/⁻, p14+/⁻ and p14(rev) mouse embryonic fibroblasts. The latter ones were reconstituted retrovirally from p14⁻/⁻ mouse embryo...

متن کامل

The late endosomal p14–MP1 (LAMTOR2/3) complex regulates focal adhesion dynamics during cell migration

Cell migration is mediated by the dynamic remodeling of focal adhesions (FAs). Recently, an important role of endosomal signaling in regulation of cell migration was recognized. Here, we show an essential function for late endosomes carrying the p14-MP1 (LAMTOR2/3) complex in FA dynamics. p14-MP1-positive endosomes move to the cell periphery along microtubules (MTs) in a kinesin1- and Arl8b-dep...

متن کامل

Crystal structure of the p14/MP1 scaffolding complex: how a twin couple attaches mitogen-activated protein kinase signaling to late endosomes.

Signaling pathways in eukaryotic cells are often controlled by the formation of specific signaling complexes, which are coordinated by scaffold and adaptor proteins. Elucidating their molecular architecture is essential to understand the spatial and temporal regulation of cellular signaling. p14 and MP1 form a tight (K(d) = 12.8 nM) endosomal adaptor/scaffold complex, which regulates mitogen-ac...

متن کامل

Localization of the MP1-MAPK scaffold complex to endosomes is mediated by p14 and required for signal transduction.

Eukaryotic cells use the extracellular signal regulated kinase (ERK) cascade to connect cell-surface receptors to intracellular targets. Although various signals are routed through the ERK pathway, cells respond accordingly to a given stimulus. To regulate proper signal transduction, scaffolds and adaptors are employed to organize specific signaling units. The scaffold protein MP1 (MEK1 partner...

متن کامل

The novel lipid raft adaptor p18 controls endosome dynamics by anchoring the MEK-ERK pathway to late endosomes.

The regulation of endosome dynamics is crucial for fundamental cellular functions, such as nutrient intake/digestion, membrane protein cycling, cell migration and intracellular signalling. Here, we show that a novel lipid raft adaptor protein, p18, is involved in controlling endosome dynamics by anchoring the MEK1-ERK pathway to late endosomes. p18 is anchored to lipid rafts of late endosomes t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 175  شماره 

صفحات  -

تاریخ انتشار 2006